
Experimental Study of Compressed Stack Algorithms in

Limited Memory Environments

Jean-François Baffier∗1,2, Yago Diez†3, and Matias Korman‡3

1National Institute of Informatics
2JST–ERATO Kawarabayashi Large Graph project

3Tohoku University

June 16, 2017

Abstract

The compressed stack is a data structure designed by Barba et al. (Algorithmica 2015)
that allows to reduce the amount of memory needed by an algorithm (at the cost of increasing
its runtime). In this paper we introduce the first implementation of this data structure and
make its source code publicly available.

Together with the implementation we analyze the performance of the compressed stack.
In our synthetic experiments, considering different test scenarios and using data sizes ranging
up to 230 elements, we compare it with the classic (uncompressed) stack, both in terms of
runtime and memory used.

Our experiments show that the compressed stack needs significantly less memory than
the usual stack (this difference is significant for inputs containing 2000 or more elements).
Overall, with a proper choice of parameters, we can save a significant amount of space (from
two to four orders of magnitude) with a small increase in the runtime (2.32 times slower
on average than the classic stack). These results holds even in test scenarios specifically
designed to be challenging for the compressed stack.

Keywords— Stack algorithms, time-space trade-off, convex hull, implementation

1 Introduction

In recent years we have seen a huge growth in the everyday use of small devices such as smartphones,
sensor networks, or even security cameras. These devices are becoming more and more powerful,
but due to several constraints (ranging from budget issues to discouraging possible theft) it is
sometimes desirable to keep them small in both memory size and computational power.

Consequently, theoretical computer science is expressing a renewed interest in the design of
algorithms that use little space. A recent trend in the community has been the appearance of
time-space trade-off algorithms [4]; that is, algorithms that can take into account space constraints;

∗J.-F. B. was supported by JST ERATO Grant Number JPMJER1305, Japan
†Y. D. was supported by the IMPACT Tough Robotics Challenge Project of Japan Science and Technology

Agency
‡M. K. was supported in part by the ELC project (MEXT KAKENHI No. 12H00855, 15H02665, and 17K12635)

1

ar
X

iv
:1

70
6.

04
70

8v
1

 [
cs

.D
S]

 1
5

Ju
n

20
17

the larger the amount of memory that they have available, the less time that the algorithms will
need. We refer the interested reader to [15] for a survey on the different models that have been
proposed to handle space constraints.

From a theoretical point of view the interest has been in the relationship between time and
space. In most cases, the dependency has been linear or almost linear [2, 3, 9, 16, 17]: that is,
when we double the amount of available space we expect the runtime to more or less halve.

We believe that all these theoretical contributions are reaching a point where they can be
used in practice. As a result, in this paper we take a more hands-on approach on the topic.
Rather than studying theoretical dependences, we implement one of the proposed approaches to
time-space trade-off and thoroughly assess its behaviour when executed using benchmark data of
varying difficulty. Specifically, we are interested on seeing how much we can reduce the amount
of memory consumed by algorithms while we make sure that runtimes remain reasonable.

Among the several results in this field, we focus on the compressed stack data structure
introduced by Barba et al. [10]. The main reason, among several others, to choose this data
structure for our analysis is that it is useful for several algorithms (as opposed to most techniques
that are only be used for a specific problem); this data structure can be used to reduce the amount
of space used by any deterministic incremental algorithm whose internal structure is a stack (see
more details in Section 2).

Another good property of this structure is that, once properly implemented, the algorithm
is unaware of which data structure it utilizes: it suffices to replace the classic (uncompressed)
stack data structure with a compressed stack. This modular transparency makes it easy for
users to adopt, and ideal for comparison purposes. Also, the dependency between time and
space is not the same everywhere: for small amounts of memory the dependency is exponential
(that is, by increasing the memory by a small constant we can halve the runtime), but it quickly
becomes logarithmic afterwards (we need to double the amount of space to see any difference in
the runtimes).

Thus, our study has two objectives. First, we want to verify that the theoretical dependency
between time and space actually matches practice. Also, we want to provide some guidelines on
how to find this breakpoint in the dependency so that the user can choose the right amount of
memory to achieve the faster algorithm that fits their memory constraints.

1.1 Results and Paper Organization

Our main contribution is the implementation of the compressed stack data structure of Barba
et al. [10]. The implementation is freely available at [6]. With the use of this library, one can
implement any algorithm that uses this data structure quickly and efficiently (see examples of
succinctness of the structure in subsection 3.6).

In Section 2 we give a brief overview of stack algorithms and the compressed stack data
structure. In Section 3 we give a quick overview of how to use our library and discuss some minor
differences between our implementation and the theoretical formulation by Barba et al..

In Section 4 we present a thorough study on the behaviour of the compressed stack in
favourable and unfavourable scenarios (both constructed with synthetic data). We pay special
attention to the comparison between the (theoretical) expected behaviour and the actual results
obtained.

As expected, the compressed stack structure uses significantly less memory than the classic
stack. From the theory we know that the running times must increase, but only a rough idea on
the increase can be told. From the experiments done in this paper, we can deduce guidelines for
prospective users so that the amount of memory is drastically reduced while we keep the runtimes
relatively low. Further discussion about parameter settings is done in Section 5.

2

2 Preliminaries

The compressed stack data structure can only be used with a family of algorithms (called stack
algorithms). This class includes widely used algorithms addressing problems such as computing the
convex hull of a set of points, approximating a histogram by a unimodal function, or computing
the visibility region of a point inside a polygonal domain. See [8, 10] for more examples of stack
algorithms.

In full generality, we look at algorithms whose the input is a list of elements I = {a1, . . . , an},
and the goal is to find a subset of I that satisfies a previously defined property. In a nutshell, we
are looking at deterministic incremental algorithms that use a stack, and possibly other small
data structures C (this additional structure is called the context and ideally only consists in a few
integers).

A stack algorithm solves the problem in an incremental fashion, scanning the elements of I
one by one. At any point during the execution, the stack keeps the values that form the solution
up to that point. For each new element a that is taken from I, the algorithm pops all values
of the stack that do not satisfy a predefined ”pop condition” and if a meets some other ”push
condition”, it is pushed into the stack. The algorithm then proceeds to the next element in I
until all elements have been processed. The final result is normally contained in the stack, and at
the end it is reported. This is done by simply reporting the top of the stack, popping the top
vertex, and repeating until the stack is empty. Thus, an algorithm A that follows this scheme is
called a stack algorithm (see a pseudo-code in Algorithm 1).

ALGORITHM 1: Theoretical scheme of a stack algorithm

1 Initialize stack S and context C (auxiliary data structure) with O(1) elements from I
2 forall subsequent input a ∈ I do
3 while A.popCondition(a,C,A.top(1),. . . ,A.top(k)) do
4 A.pop()
5 end
6 if A.pushCondition(a,C,A.top(1),. . . ,A.top(k)) then
7 A.push(a)
8 end

9 end
10 A.report()

2.1 Sample problem: convex hull computation

A typical example of a stack algorithm is the convex hull problem: given a list of points p1, . . . , pn
in the plane sorted in increasing values of their x-coordinate, we want to compute their convex
hull, i.e., the smallest convex set that encloses all of the them. Among the many algorithms that
solve this problem, [1]1, the one by [18] falls in the class of stack algorithms.

Lee’s algorithm processes the points sequentially and stores the elements that are currently
candidates for being in the convex hull. For simplicity, we discuss how to compute the upper hull
(i.e., points that are in the convex hull and are above the line passing through the rightmost and

1The algorithms in this survey actually compute a slightly more general problem: computing the convex hull
of a simple polygon, but both problems are almost identical. The simple polygon case has a few more difficult
cases (such as when the polygon spirals around itself), but they have no impact on the way in which the stack is
handled. Thus, for simplicity we only describe the simpler case.

3

Figure 1: One step of Lee’s algorithm: the upper convex hull after processing 9 leftmost points
(denoted by squares in the figure) and their convex hull is highlighted (dashed region). The next
point (empty circle) is a witness that three points do not belong to the hull. These four points
were the last ones to be added into the upper hull and thus they are popped from the stack. The
updated hull is also shown (in solid).

leftmost point) of a set of points2.
When a new element is processed it may be witness to several points that were previously

in the upper hull and should not be there anymore (see Fig. 1). The key property is that those
points must be the last ones that were considered as candidates. Consequently, they are removed
in reverse order of insertion and thus a stack is the perfect data structure to store the list of
candidates.

We refer the interested reader to [13] for more details on the convex hull problem and its
applications. As an illustration on the simplicity in implementing stack algorithms, we have
implemented this algorithm as part of our library (details are given in subsection 3.6).

2.2 Compressed Stack Overview

In this section we briefly describe the compressed stack data structure making a special emphasis
on how can we save memory. During the execution of a stack algorithm, one may have many
elements of the input in the stack. These elements are stored explicitly if we use the traditional
stack resulting in high memory usage.

In the compressed stack structure, the user chooses a parameter p (to indicate the amount of
space that the algorithm is allowed to use). Then the input is split into p blocks. Whenever a
block has been fully processed (i.e., the incremental algorithm has scanned the last element of
the block) we compress the block: rather than explicitly storing it, we store a small amount of
information3.

This saves a lot of memory, since a block could have many elements in the stack but only a
fixed amount of information per block is stored instead. Since we scan the input in a monotone

2The traditional algorithm scans once the input to compute the upper hull and a second time to compute the
lower hull, but we note that the same algorithm can be modified to work in one pass by using two stacks. In any
case, neither of these two options have a large impact on the overall working of the stack algorithm, so we ignore
this and focus in the upper hull only.

3there exist two ways in which the block can be compressed, totally and partially. The basic concept is
introduced in subsection 3.3. We refer the reader to Barba et al. [10] for complete details on this

4

fashion only one block can be partially processed at any instant of time. We store that block and
its preceding block explicitly (i.e., most of the information is explicitly stored), while all other
ones are somehow compressed.

Stack algorithms only need access to the top of the stack at any given time. Since this
information is known by the compressed stack, we can perform as a usual stack. Eventually, the
algorithm may pop many elements, and then the information inside a block that was compressed
will be needed. This information can be reconstructed by re-executing the same algorithm, but
only restricted to a portion of the input. The key trick to keeping the runtime small is to make
sure that few reconstructions are needed, and always restricted to small portions of the input.

We emphasize that the working of the compressed stack is transparent to the algorithm. The
algorithm is running, does some push and pop operations as well as reading the top of the stack.
The stack data structure handles compression of information independently. Sometime during
the execution, a pop will trigger a reconstruction. In this moment, the algorithm is paused and
we launch a copy of the same algorithm (with a smaller input). Once the small execution ends,
the needed information is available in memory, and we can resume with the main execution.

From a theory standpoint, stack algorithms run in O(n1+ 1
log p) time using O(p logp n) space

for any parameter p ∈ {2, . . . n}. In particular, when p is a relatively large number (say, p = 500)
the algorithm runs in slightly sublinear time, and uses logarithmic space. On the other hand,
when p = nε the algorithm runs in linear time and uses O(nε) space. For comparison purposes,
the usual stack runs in linear time and uses linear space, so the latter case all it consumes more
memory without reducing the runtime (from a theoretical point of view).

3 Implementation

In this section we introduce our implementation of the stack algorithm framework. This section
also aims at providing prospective users with practical information that enables them to add
the compressed stack to their application or implement their own stack algorithms using the
templates provided.

This library was implemented following the C++11 standard, and as such, requires a compiler
that can support C++114 [14]. As a convention, all the class members (fields or methods) starts
with a ‘m’ followed by an upper case and all variables by a lower case. The entirety of pointers used
within the library are instantiation of shared ptr5. The code is available at [6] as an open source
library under the MIT license. A preliminary but operational version — using Julia language [11]

— was presented by Baffier et al. [5] and is available as [7] under the same MIT license.
The rest of this section is organized as follows: First, we describe the file organization of

our library in subsection 3.1. The reading, treatment, and storage of the input data along with
the description of the context structure follows in subsection 3.2. In subsection 3.3 we present
the compressed stack data structure to be used within a stack algorithm. The whole library
is then structured around the stack algorithm class as detailed in subsection 3.4. Additional
functionalities are described in subsection 3.5. Finally, in subsection 3.6, we provide a couple of
examples instantiating the stack algorithm class.

3.1 Class and file organization

Our stack algorithm library consists of three main classes: the Data class that handles the input,
the CompressedStack class that instantiates transparently a space-optimized stack structure,

4That is one that accepts either -std=c++11 or -std=c++0x compilation flags
5A smart pointer default class of the C++11 standard that automatically manages the memory of pointers

sharing a common element. It follows the resource acquisition is initialization (RAII) programming idiom

5

and the StackAlgorithm class itself — respectively in subsections 3.2 to 3.4. These key classes,
along with those they depend on, are all grouped in the /include folder as shown in Fig. 2.

CompressedStack.cpp (part 1)

examples

upperhull (similar to testrun/ below)

testrun

include

testrun.hpp

testrunExtras.hpp

testrun8.cpp

testrun16.cpp

testrun32.cpp

testrun64.cpp

testrunExtras.cpp

generateInputtestrun.cpp

CMakeLists.txt

CompressedStack.cpp (part 2)

extras

adaptiveUInt.hpp

classicStack.hpp

stackAlgoExtras.hpp

include

block.hpp

buffer.hpp

component.hpp

compressedStack.hpp

data.hpp

stack.hpp

stackAlgo.hpp

LICENSE

Figure 2: Directory tree of the CompressedStack.cpp library.

Extra functionalities — including an implementation of a classic stack and some measurement
functions — are in a separate folder (named /extras). These classes are not needed for the
execution of stack algorithms, but are useful for debugging and evaluation purposes. Finally,
examples on how to implement stack algorithms (using normal or compressed stacks) can be
found in the /examples folder.

3.2 Data, context and index types

In principle, the compressed stack algorithm can work with any kind of input data (depending on
the application it could be numbers, points in the plane or edges of a large graph). In order to
maintain the versatility, our implementation depends of several parameters provided by the users.

Because we use these abstract types, we cannot precompile the library. The abstract type
is implemented in C++ via templates, causing the library to be header-only. The first set of
parameters users have to fix relates to the type of input to be read (see Fig. 3). Specifically, the
data type D needs to be provided so the algorithm is aware of the type of elements that it will
receive from the input in the main loop of the stack algorithm.

Additionally, the user must fix the index. This is a type simply used to fix the maximum
expected size of the input (so as to use a reasonable number of bits per input object). Samples
for data index up to 8, 16, 32, and 64 bits unsigned integers are provided in the examples. For
the sake of conciseness, the size of the index type is ignored for the rest of this article.

6

Stack with context type T and data type D

vector

�interface�
Stack

virtual Data<T,D> pop(Problem<T,D> &problem)

virtual void push(const Data<T, D> &data)

virtual Data<T,D> top(int k)

virtual bool empty(int lvl, int component)

CompressedStack

ClassicStack

Explicit<T,D> mDatas
Explicit

Data

int mIndex

D mData

D getData()

Figure 3: Class Diagram for the Stack interface and its implementation by ClassicStack. The
CompressedStack implementation is described in Fig. 5. The namespace std is used implicitly
for vector.

Finally, the user must fix the context. This context is a data structure of bounded size that
is used during the execution of the stack algorithm. The space bottleneck of stack algorithms is
the stack itself, but often they use a small amount of memory in their computations (for example,
in the convex hull example, context is a bit used to prevent a degenerate case in which the convex
hull spirals into itself). This context can be accessed (and modified) at any moment during the
execution of the algorithm.

3.3 Compressed Stack

Our implementation pays special attention to modularity, so the stack algorithm is transparent
to the kind of stack that is actually being used. That is, the algorithm sends push and pop
requests and need not know if they are being handled by a regular or a compressed stack. All
modifications needed to deal with space constraints are handled by the compressed stack class.

A stack, as shown by the Stack interface in Fig. 3, must provide a pop and a push function.
It might also provide functions to check the top k element of the stack (for some small k > 0
given by the user). For convenience, a function to test the emptiness of a stack is also expected.
Both the CompressedStack and the ClassicStack classes provided in this library instantiate
this Stack interface.

Please see Fig. 4 for an overview of the working of the CompressedStack class. The key trick
of saving space is to partition the input into blocks, that are recursively partitioned into blocks,
and so on. Recall that a block may be stored explicitly (if it stores all elements of the block
that have been pushed into the stack), partially compressed (in this case, we store information
required to reconstruct portions of the block) or fully compressed (we store information required
to reconstruct the block fully). This data structure compresses information that is unlikely to be
accessed in the near future. Depending on the value of parameter p (set by the user) we may
compress more or fewer blocks.

The resulting object-programming structure that constitutes the CompressedStack class is
described in Fig. 5. The components store compressed data in their mPartial attribute. This

7

. . .p blocks

...

. . .

. . .

...

. . .

{p explicit values}

Component 1
(mFirst)

. . .

...

. . .

. . .

...

. . .

{p explicit values}

Component 2
(mSecond)

Level 1

Level i

Level i+ 1

Level h− 1

Level h

n
p p.c. elements

ph−i+1

p.c. elements

ph−i

p.c. elements

p2 p.c. elements

n · p−2
p
≈ n elements

Fully Compressed Tail
(mCompressed)

:> first index

:> last index

:> stream position

:> context

:> buffer

Generic Block

Figure 4: General sketch of a Compressed Stack: red boxes are blocks, green boxes are levels
(vector of blocks), blue boxes are explicit values, plain arrows shows the partial compression (p.c.)
of a level i+ 1 into a block at level i. Recall that p is a parameter set by the user (denoting how
much to compress the data), and that h ≈ logpn will denote in how many levels we subdivide the
input.

takes the form of a matrix (vector of vectors) of blocks. Explicit data is stored in the mExplicit

attribute. A buffer mBuffer stores the k top elements of a compressed stack that are required to
be accessible by the user.

An object of the CompressedStack class includes the following attributes: The number of
elements6 in the input I as mSize. The space order p as mSpace and the depth h of each
components as mDepth. A pointer to the current position in the stream, mPosition and a pointer
to the current context mContext. The two necessary components of the stack that stores both
compressed and explicit data: mFirst and mSecond. The fully compressed tail of elements
mCompressed.

As described in Section 2, a compressed stack may need to self-reconstruct part of its
compressed content that is stored in a block. This object is implemented as the Block class that
stores the index of the first and last elements of the block. It also stores the position in the input
stream, the context and an optional buffer.

6The case where the exact number is unknown is an additional functionality that is treated and explained in
subsection 3.5. Although there might be some efficiency loss, the behaviour of the compressed stack is unchanged.

8

CompressedStack with context type T and data type D

vector<shared ptr>

vector

vector

CompressedStack

int mSize

int mSpace

int mDepth

streampos mPosition

shared ptr<T> mContext

Component<T,D> mFirst

Component<T,D> mSecond

Level<T,D> mCompressed

Buffer<T,D> mBuffer

Level Levels

Block

int mFirst

int mLast

streampos mPosition

shared ptr<T> mContext

Buffer<T,D> mBuffer

Component

Levels<T,D> mPartial

ExplicitPointer<T,D> mExplicit

Block<T,D> mSign

Buffer

int mSize

int mStart

ExplicitPointer<T,D> mExplicit

void pop(SPData<T,D> elt)

void push(SPData<T,D> elt)

Data

int mIndex

D mData

D getData()

ExplicitPointer

Figure 5: Class Diagram for the CompressedStack and related classes. The namespace std is
used implicitly for vector, shared ptr, and streampos.

3.4 Stack algorithm: Practical vs. Theoretical

In addition to the compressed stack data structure, we provide a framework for the compressed
stack algorithms themselves (i.e., the general scheme described in Algorithm 1). Although their
theoretical framework is complete and sound, we introduce some minor variations that may help
in practical applications. See the modified version in Algorithm 2.

Consider a stack algorithm A with associated stack S (classic or compressed) and context C.
First, we describe the key features common to both Algorithms 1 and 2:

• initialize: initialize, if necessary, the empty stack S and context C. If the algorithm is
allowed access to the top k elements of S, then the execution of this function must provide
at least k elements of I into S.

• popCondition: returns true if the top of the stack S has to be popped.

• pop: pops the top element of S.

• pushCondition: returns true if the last read element of I should be pushed into the stack.

• push: pushes that element into S.

9

ALGORITHM 2: Implementation of a stack algorithm

input : A stack algorithm A with: an empty stack S; an empty context C; an input stream I.
1 A.initialize()
2 while I.EOF() == false do
3 a← I.readInput()
4 while S 6= ∅ do
5 if A.popCondition(a) then
6 A.prePop(a)
7 a′ ← S.pop()
8 A.postPop(a, a′)

9 else
10 A.noPop(a)
11 break // exit the while loop

12 end

13 end
14 if A.pushCondition(a) then
15 A.prePush(a)
16 S.push(a)
17 A.postPush(a)

18 else
19 A.noPush(a)
20 end

21 end
22 A.report()

• report: A execute a set of actions aimed towards reporting the objective of the algorithm
once all the input data of I has been processed. In most cases it explicitly returns the
contents of the stack (report the top, pop from the stack, report the next one, and so on
until the stack is empty).

Observe that the scheme of Algorithm 1 hides practical aspects, such as how to access the
input values I (on Line 2), or additional actions that could be executed together with either the
push or pop (Lines 4 and 7). We provide these additional operations in Algorithm 2 defined as
follows:

• readInput: operation executed each time an input element is read I (e.g. if the input is
provided in the form of an input file, this operation processes one line from the file and
transforms it into data type D).

• prePush and prePop: set of actions to be executed before doing a push and pop, respectively.

• postPush and postPop: set of actions to be executed after a push and pop, respectively.

• noPush and noPop: set of actions to be executed when there is no push or pop, respectively.

The user can tune all the functions described above as needed. Other than readInput, by
default the procedures do nothing (and can remain as such if not needed by the stack algorithm).
Finally, the algorithms uses an End-Of-File operation EOF. This operation is used in Algorithm 2
at Line 2 and simply returns true once the end of input I is reached (false otherwise).

All these functions and all basic stack functionalities are summarized in Fig. 6.

10

Stack Algorithm with context type T and data type D

�interface�
StackAlgorithm

int mIndex

ifstream mInput

ofstream mOutput

shared ptr<T> mContext

shared ptr<Stack<T,D>> mStack

void run()

void push(Data<T,D> elt)

Data<T,D> pop()

Data<T,D> top(int k)

bool emptystack()

void setContext(const T &context)

T getContext()

void print()

void readPush(int iter)

virtual D readInput(vector<string> line)

virtual shared ptr<T> initStack()

virtual bool popCondition(D data)

virtual void prePop(D data)

virtual void postPop(Data<T,D> elt)

virtual void noPop(D data)

virtual bool pushCondition(D data)

virtual void prePush(Data<T,D> elt)

virtual void postPush(Data<T,D> elt)

virtual void noPush(D data)

virtual void report()

Stack

virtual Data<T,D> pop(Problem<T,D> &problem)

virtual void push(const Data<T, D> &data)

virtual Data<T,D> top(int k)

virtual bool empty(int lvl, int component)

TestRun

int readInput(vector<string> line)

shared ptr<int> initStack()

bool popCondition(int data)

void prePop(int data)

void postPop(Data<int,int> elt)

void noPop(int data)

bool pushCondition(int data)

void prePush(Data<int,int> elt)

void postPush(Data<int,int> elt)

void noPush(int data)

void report()

UpperHull

Figure 6: Class Diagram for the StackAlgorithm interface corresponding to Algorithm 2. The
class TestRun is an implementation of StackAlgorithm for problem 1 where the context type
T = int and the data type D = int. The namespace std is used implicitly for ifstream, ofstream,
shared ptr, vector, and string.

3.5 Additional Functionalities

This section covers some additional functionalities of our library. Most of these functions aim to
facilitate the evaluation and possible debugging of the library by the users. Documentation is
available on [6].

Directly into the StackAlgorithm class we count the number of reconstructions executed
during its execution. In addition, we provide funcionalities to automatically handle an unknown
input size (in a way that is transparent to the user). Ideally, the user should input a value nexpect
that is somehow close to n. The compressed stack will work correctly regardless of the value
given, but the more accurate the estimate is, the better the compressed stack will perform (if
n� nexpect, the algorithm will be much slower, whereas nexpect � n will cause too much memory
to be used).

We also provide the option of using a classic stack (by itself or in parallel to the compressed
stack). We also added a function to check that both the classic and the compressed stacks behave

11

similarly. The comparison between the behaviour of the two kind of stacks checks, after each
readInput, pop, and pushoperation in the stack, that all information explicitly stored in the
compressed stack matches the classic one.

We encourage the reader to add debugging and analysing tools within this extra framework
and keep the original compressed stack class as light as possible. Contributions to [6] are welcome.

3.6 Example of Stack Algorithms

To illustrate the use of the compressed stack and of the stack algorithm, we provide two examples.
This will also showcase how easy it is to implement new stack algorithms. The first example
(problem 1) is a minimal one that can simulate any distribution of pops and pushes that we use in
the experiments of Section 4. The upper hull problem introduced in subsection 2.1 is referred as
problem 2. Both are fully implemented and available on [6].We also provide an instance generator
for both problems.

Problem 1 (Test Run). This is an artificial stack algorithm that executes push and pop operations
for debugging purposes. The data type D is a pair of positive integers separated by a comma.
The first number indicates the value to be pushed into the stack whereas the second indicates the
number of pops that should be done in lines 4-13 of Algorithm 2. The purpose of this algorithm
will be clear in Section 4.

Problem 2 (Upper Hull). This algorithm computes the upper hull of a set of points in the
plane, assuming that the input is given in increasing values of the x-coordinate. As shown in
subsection 2.1, this can be done with a stack algorithm. For this problem, the data type D is a
class Point2D that represents two dimensional points, and the input is simply the list of points as
a pair of float coordinates. The output is an ordered list of points which represent the vertices
of the upper hull.

The algorithm of Lee does not need any context to compute the upper hull of a set of points
that are sorted in the x-axis7, so it is simply set to a null pointer in C++11. Note that, during
the execution of the algorithm, it will access the top two elements of the stack when determining
whether or not to pop.

Since this algorithm fits in the stack algorithms class, it can be easily implemented (see a
concise implementation in Fig. 7).

7If the points come sorted in a different way, then a context will be needed to prevent some degenerate cases.
In any case, these degenerate cases have no impact on the usage of the stack, so we ignore them.

12

std:: shared_ptr <emptyContext > initStack () {

// first , read and push two values

StackAlgo <emptyContext , Point2D , int >:: readPush (2);

// then initialize context (which in this case is NULL)

std:: shared_ptr <emptyContext > context;

return context;

}

bool popCondition(Point2D last) {

Point2D minus1 , minus2;

// read the two previous elements

minus1 =

StackAlgo <emptyContext , Point2D , int >:: top (1). getData ();

if (StackAlgo <emptyContext , Point2D , int >::

mStack ->getBufferLength () < 2) {

return true;

}

minus2 = StackAlgo <emptyContext , Point2D , int >::

top (2). getData ();

// Pop condition is true depending on the points position

if (Point2D :: orientation(minus2 , minus1 , last) == 1) {

return true;

}

return false;

}

bool pushCondition(Point2D data) {

return true;

}

Figure 7: Instation of a StackAlgorithm template for the upper hull problem. Although we
omit the code of the Point2D::orientation function, this implementation of the upper hull is
concise, simple and independant of the kind of stack selected by the user.

4 Experimental Results

This section contains experimental studies aimed at analysing the practical performance of the
compressed stack.

4.1 Data and evaluation measures.

In our experiments we use synthetic data. The main reason behind this decision is that it allows
us to fully control the conditions in which the compressed stack would have to work (for example,
we can control the number of reconstructions that will be executed). In addition, compressed
stack algorithms spend a significant amount of time computing things that are unrelated to the
stack (for example, in the upper hull algorithm, the popCondition operation must compute the
determinant of a 3× 3 matrix). Since these additional computations can affect the leading term
for the running time, it make it hard to compare the performance of both stacks.

13

Our aim is to measure the differences between using a regular and a compressed stack. Thus, it
is desirable to keep additional overhead to a minimum. As such, we implemented our experiments
with the testrun problem described as problem 1 in Section 3.

The first experiment represents a very favourable situation for the compressed stack: a case
in which data is accessed almost sequentially (and thus it is ideal for compression purposes). The
goal in this case is to show the potential of memory saving that this data structure can achieve.
The second test aims at setting a much more challenging scenario: continuous pops are set in a
way such that scattered positions of the input file need to be accessed. This forces the compressed
stack to repeatedly reconstruct portions of the input, and thus potentially lose a lot of time when
compared to the classic stack.

In order to measure the performance of our implementation we focused on two magnitudes:
the maximum amount of memory used by the algorithm and the running time. To measure the
first, we used a heap profiler called massif [19] belonging to the Valgrind software suite. This
software keeps track of the memory allocated in the execution heap at intervals of predefined
length and outputs detailed heap memory usage. While this software allowed us to measure
maximum memory usage, its use made the running of the algorithms much slower.

As the second magnitude that we were interested in was run-time, we needed to make two
separate runs for every test case. In the first execution, we run massif alongside our code,
obtaining memory usage data. In the second execution we run the test code alone in order to
obtain unadulterated run-time readings. Consequently, in this section we present memory usage
readings as outputted by massif (in bytes unless otherwise stated) as well as the times of the
algorithms (in seconds) when run without massif. In order to be able to present values for widely
different sizes, in each execution, we doubled the size of the input n (of size n = 2i for increasing
values of i).

For comparison purposes, we also coded a classical stack class that implements the stack
interface described in Fig. 3. This is simply a wrapper class for the widely used C++ std vector
that implements the std::stack interface. We believe that this is a representative instance of a
classical stack using unconstrained memory. Regarding the parameters of the compressed stack,
we focused on the ‘p’ space parameter introduced in subsection 2.2. For the purposes of this
experiment, it suffices to know that the larger p is, the more space is used by the compressed
stack (and fewer reconstructions are needed).

In order to illustrate the effect of this parameter in the performance of the compressed stack,
we present results for eight different values of p. Specifically, the first four values are fixed (10,
50, 100 and 500) while the other four change with the size of the input n:

√
n, 4
√
n, 8
√
n and log n.

Fixed values allow us to illustrate how an imbalance between n and p may result in very high
running times for the compressed stack while the varying (and ever growing) values

√
n, 4
√
n, 8
√
n

and log n exemplify the trade-off between a lower memory limit for the compressed stack use and
higher computation times. In order to keep the section within reasonable length limits, we only
present summary figures of memory usage and running times. Detailed tables can be downloaded
at [6].

4.2 Linear sized stack

In this first test we aim at creating a scenario that maximised the possibility of memory saving
by the compressed stack with minor impact on the runtime. We consider the case in which the
stack contains a linear fraction of the input. Specifically, fix a probability ρ ∈ [0, 1]; then every
element of the input is pushed, and a pop will be executed with probability 1− ρ. In terms of
the testrun problem defined, this stood for an input made up of a text file with a list of pairs
of integers. For every pair, the first integer was a random positive number and the second was

14

211 216 221 226

105

107

109

Size

Memory (bytes)

classical p = 10 p = 50 p = 100 p = 500

p =
√
n p = 4

√
n p = 8

√
n p = log(n)

(a) Memory comparison classical vs compressed. For
ease of visualization, a logarithmic scale was used
in both axes.

0 0.2 0.4 0.6 0.8 1 ·109
0

2,000

4,000

Size (×109)

Time (s)

(b) Time comparison classical vs compressed. No
scaling in either axis is done for this figure.

Figure 8: As expected from theory, the normal stack uses a linear amount of space whereas the
compressed stack only logarithmic. Regarding runtime, the classic stack has, as expected, the
best performance of all. For large values of p (such as p = 4

√
n) the running time is comparable

to that of the classic stack. Conversely, for smaller values we can see that running times increase
significantly. This is because smaller values of p need more reconstructions, which produce higher
computation times.

chosen to be 1 with probability 1− ρ.
For any fixed ρ > 0 the expected size of the stack is ρn, and thus the memory used by the

classic stack will be linear, whereas the compressed stack will only store a logarithmic amount
of elements. Figures 8a and 8b show the memory used and runtime of our experiments for the
case in which ρ = 1 (and thus no pops are ever executed). While we acknowledge that this is not
a realistic situation, it does highlight the potential saving of space achieved by the compressed
stack in cases where a large portion of it does not change.

To simulate more realistic situations, we also repeated the experiment with different values of
ρ. In all cases, the tendencies observed were similar to the case without pops: the larger the value
of ρ the fewer pops are executed, thus the more memory is needed (for example, the compressed
stack with p = 4

√
n the memory used when ρ = 1, is between 1.6 and 2 times that of ρ = 0.1).

However, the classic stack always needs a linear amount of space (for example the memory used
increases around 24 times for the same parameters). On the other hand, with a larger number of
pops, the compressed stack must be reconstructed more often, which brings noticeable increases
in the running time (of 1.24 times slower on average on the case mentioned, for example). Since
the overall performance for all values of ρ is similar, we refer the interested reader to [6].

Figure 8a depicts the maximum amount of memory needed in this test. A logarithmic scale
(of base 2 for the x axis and base 10 for the y axis) is used for ease of visualization. The figure
shows how in this test the classical stack needs much more memory than any of the compressed
variants. There are two exceptional cases in which the classical stack uses less memory than a

15

compressed stack algorithm, but it only happens for extremely large values of p when compared
to the input size (specifically, the compressed stack with p = 500 and input sizes of 210, 211). This
shows how the choice of parameter p is important to optimize the performance of the compressed
stack. In this case p is too close to n (n = 210 = 1024) and the structure of the stack is wasted as
most values are kept explicitly.

The memory needed by the normal stack exceeds that of any compressed variant by two
orders of magnitude already by size 219. This difference grows together with n (reaching four
orders of magnitude for 229). The maximum memory needed by the classical stack in the test was
over 25 Gigabytes for an input file of size 230 (over 1000 million). Conversely, the compressed
stack, in the worst case, only needed 54.6 Megabytes.

If we compare the different values of p for the compressed stack, we observe that, as expected,
smaller values of p result in lower memory usage. Moreover, the results of algorithms with fixed
values of p match the ones of variable p at expected values (for example, the algorithm with
p = 500 should perform like the algorithm with p =

√
n when

√
n = 500← n = 250000 ≈ 219, and

the two curves meet around that value). For fixed values of p it is easy to see that the memory
grows logarithmically (specifically, we see a bump in the memory requirements when dlogp ne
changes), whereas the growth is smoother for variable values of p. In all cases, the growth is very
monotone, which matches the expectation from theory.

The downside of using a small value of p is that the running time will increase. The effect of the
growth of p is only mildly visible in Figures 8a and 8b but will be more evident in subsection 4.3.
The reason for this is that the number of times that the reconstruct function is invoked is small.

4.3 A challenging scenario for the compressed stack

In this section, we present a different test scenario that specifically tries to maximize the problems
of the compressed stack: we set the input to produce push-pop cycles so as to force many
reconstructions. Hence, overall the values that are pushed are at non-contiguous positions,
making it difficult for the information to be compressed. Moreover, we make sure that the overall
data that needs to be stored grows, but not at a linear rate. This is again a very artificial
construction, but we believe that it shows that even under difficult conditions the compressed
stack performs reasonably well. In order to create this setting, the instance forces the following
operations into the stack:

• Push 8 elements, pop half of them (4).

• Repeat the previous step 8 times. At this point we have processed 64 elements and keep
half of them (32) in the stack.

• Pop half of the stack, resulting in a stack of 16 elements.

• Repeat this double loop 8 times, resulting in 128 elements in the stack after 512 elements
have been processed.

• We again pop half of the stack, keeping only 64 elements in the stack.

• Repeat now the triple loop 8 times, and so on

This procedure keeps adding cycles of increasing length until the desired input size n is reached.
The stack stores 4 elements that are consecutive in the input, but the spacing between numbers
to store grows exponentially, creating a very difficult situation for the compressed stack (since
reconstruction operations will have to scan large portions of the input for just a few elements
that are stored explicitly in the regular stack).

16

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

50

100

150

200

250

300

350

400

450

500

550

Number of processed elements

H
ei

g
h
t

o
f

th
e

st
ac

k

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

50

100

150

200

250

300

350

400

450

500

550

Number of processed elements

H
ei

gh
t

of
th

e
st

ac
k

Figure 9: Number of elements in the compressed stack as a function of the number of processed
elements. The zoomed image shows two levels of recursion, and outside the zoom we can see two
more levels (for a total of four).

As in the previous example, n was taken following the powers of 2. Note that the choice of
making loops with 8 iterations (and popping half of the stack at each step) is arbitrary. As 8 is
a power of 2, the memory usage patterns in the classical stack become easier to predict (more
details below). We call this test the Christmas tree test (because the height of the stack forms a
Christmas tree-like shape, see Fig. 9 for a graphical representation on the number of elements
present in the stack as a function of the input size.

Figure 10a shows the memory used in the Christmas tree test by all different stacks. We
observe that the memory usage by the classical stack is significantly lower than in the previous
experiment. This happens because very few elements are added into the stack (every factor of
eight that the input grows, the space requirements only grow by a factor of 4, hence the stack
has roughly n2/3 elements).

This memory usage also grows stepwise in the sense that similar memory usages are detected
for consecutive sizes. This is caused by the shape of the christmas tree (after a big pop like the
one we find at around 4500 in Fig. 9 increases in the input size will not increase the amount of

17

211 216 221 226
104

105

106

107

Size

Memory (bytes)

classical p = 10 p = 50 p = 100 p = 500

p =
√
n p = 4

√
n p = 8

√
n p = log(n)

(a) Memory comparison classical vs compressed (log-
arithmic scale used in both axes), CT test.

0 0.2 0.4 0.6 0.8 1 ·109
0

0.5

1

1.5

·104

Size (×109)

Time (s)

(b) Time comparison classical vs compressed, CT
test. Linear scale was used.

Figure 10: Christmas Tree experiments. In this test, designed to be challenging for the compressed
stack, the memory saving respect to the classical stack is much smaller (and in a few instances
the classical stack even needs less memory than some compressed stacks). Concerning time, the
constant calls to the reconstruct function make the compressed stack much slower (as exemplified,
for example by the behavior of the compressed stack with p = 10. However, even in this tailored
scenario, we can see how the compressed stack maintains a capped memory usage as well as
relatively low running times if the value of p is chosen appropriately (as can be seen for example,
in the values of p = 4

√
n).

memory needed until we reach a bigger loop).
We observe that the amount of memory needed by the compressed stacks is almost the same

as the one needed in the previous experiment (the ratio varies slightly with every instance but
stays between 0.8 and 1.2 of each other). The increase of the use of memory by the compressed
stack in some cases is produced by the fact that the reconstruct function (frequently invoked in
this example) duplicates parts of the input that might be of significant length.

It is important to notice that, although in this case, the memory saved by using the compressed
stack is small (and in some of the cases with smaller n the compressed stack even needs more
memory than the classical stack), the main reason for this is that the memory needed by the
classical stack in this test is low. For example, the highest memory usage value in this test is four
orders of magnitude lower that the maximum of the previous test. Even in such an ill conceived
example, the maximum memory required by a compressed stack (with p =

√
n) is two orders of

magnitude smaller than the classic stack. This shows how the memory used by the compressed
stack stays capped even in the worse situations.

As expected, the number of reconstructions is much larger for the christmas tree instance. As
such, the difference in the runtimes between the classic stack and a compressed one grows (as
seen in Figure 10b). We observe that, although for small values of p the running times become
unfeasible, for larger values the runtime is comparable to the one of a regular stack. For example,
for p = 4

√
n, the runtime in average increases by a factor of 2.32 (with 4.50 in the worst case).

18

This table exemplifies how the theoretical time-space trade-off is realised in practice and can
itself constitute a starting point for prospective users of the compressed stack data structure.
The left side of the table would be used to assess how much memory could be needed by every
configuration of the compressed stack (expressed in the values of p) while the right side would
provide an indication of the time penalty that the use of the compressed stack might produce.
For example, in this case we believe the best compromise is obtained by the compressed stack
with p = 4

√
n although the user should also chose the smaller value of p that fits their memory

constraints in order to obtain the fastest running algorithm.

5 Conclusions

The experiments of this paper show that the compressed stack structure can be very useful not
only from a theoretical point of view, but also on a practical level. Parallel to our work, a similar
experimental study for another time-space trade-off problem previously only studied from a
theoretical standpoint was done by [12]. Specifically, they studied the time-space dependency for
the the problem of computing the shortest path between two points in a simple polygon. We
believe that a trend of similar studies will soon follow for these or related problems.

Other than our preliminary implementation [7], this is the very first implementation of the
compressed stack data structure introduced in [10]. The source code along with the data from
the experiments presented in this paper is available for download as [6].

The results presented show how the compressed stack, along with other memory constrained
algorithms has a huge potential to impact new technological contexts such as sensor networks
or mobile phone apps. Specifically, Subsection 4.2 presented a (synthetic) situation where a
normal stack needed 25 Gigabytes of memory while compressed stack implementations needed
at most 55.5 Megabytes. This situation represents a challenge for current desktop computers
and is infeasible in even the more advanced mobile phones (Apple’s Iphone 7, for example has 2
Gigabytes of RAM memory). Although this was a tailor-made case, it still shows how the property
of the compressed stack of being able to limit memory usage by trading it for computation time
has the potential of opening new application possibilities.

The reduction of memory of this data structure is undeniable, even in the very unfavourable
scenario of the christmas tree. Moreover, the amount of memory needed in all scenarios is very
stable (the amount of memory needed between the ideal and unfavorable scenarios lies between
0.9 and 1.2 of each other). This makes the compressed stack very robust at holding memory
limitations, even for situations in which we do not know much about the structure of the input.

Although it was known that the saving of memory implies a runtime penalty, the exact
amount was unclear. In this paper we have quantified how big much of a penalty to expect. The
experiments show how the behaviour of the compressed stack can be predicted. Special attention
has been given to comparing the practical behaviour to theoretical predictions. For example,
the best value of p from a theoretical point of view is a fixed large constant as it gives the best
time-space product. However, in our examples we have seen that a fixed value does not always
perform well (for too small instances it may consume even more memory than the classic stack,
and for larger instances the runtime may increase too much). Instead, values that depends on the
size of the input (such as 4

√
n) provide the best practical behaviour.

Each user of the compressed stack can choose the value of p so it fits the memory constraints
in each specific situation and have an assessment on what the increase in run time will be. The
examples presented in this paper can be used as guidelines by prospective users of the data
structure to chose the values of p when they implement their applications using the stack algorithm
templates provided in our library.

19

References

[1] G. Aloupis. A history of linear-time convex hull algorithms for simple polygons, 2005.
http://cgm.cs.mcgill.ca/~athens/cs601/.

[2] B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen. Time-space trade-offs
for triangulating a simple polygon. Journal of Computational Geometry, 8(1):105 – 124,
2017.

[3] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Computational Geometry: Theory and Ap-
plications, 46(8):959–969, 2012. Special issue of selected papers from the 28th European
Workshop on Computational Geometry.

[4] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Computational Geometry: Theory and Applica-
tions, 46(8):959–969, 2013.

[5] J.-F. Baffier, Y. Diez, and M. Korman. Implementation of stack structure with limited
memory. In AA-AC, 2016.

[6] J.-F. Baffier, Y. Diez, and M. Korman. Compressed stack library (c++). https://github.
com/Azzaare/CompressedStacks.cpp.git, 2016.

[7] J.-F. Baffier, Y. Diez, and M. Korman. Compressed stack library (julia). https://github.
com/Azzaare/CompressedStacks.jl.git, 2016.

[8] N. Banerjee, S. Chakraborty, V. Raman, S. Roy, and S. Saurabh. Time-space tradeoffs for
dynamic programming algorithms in trees and bounded treewidth graphs. In COCOON,
pages 349–360, 2015.

[9] L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing the visibility polygon
using few variables. Computational Geometry: Theory and Applications, 47(9):918–926, 2013.

[10] L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space–time trade-offs
for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2014. ISSN 1432-0541. URL
http://dx.doi.org/10.1007/s00453-014-9893-5.

[11] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. CoRR, abs/1411.1607, 2014.

[12] J. Cleve and W. Mulzer. An experimental study of algorithms for geodesic shortest paths in
the constant workspace model. In EuroCG, pages 165–168, 2017.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[14] ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++.
International Organization for Standardization, 2012. URL http://www.iso.org/iso/iso_

catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372.

[15] M. Korman. Memory-constrained algorithms. In Encyclopedia of Algorithms, pages 1260–1264.
Springer, 2016.

20

http://cgm.cs.mcgill.ca/~athens/cs601/
https://github.com/Azzaare/CompressedStacks.cpp.git
https://github.com/Azzaare/CompressedStacks.cpp.git
https://github.com/Azzaare/CompressedStacks.jl.git
https://github.com/Azzaare/CompressedStacks.jl.git
http://dx.doi.org/10.1007/s00453-014-9893-5
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

[16] M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein. Time-
space trade-offs for triangulations and Voronoi diagrams. In Algorithms and Data Structures
Symposium (WADS), pages 482–494, 2015.

[17] M. Korman, W. Mulzer, A. v. Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein. Time-space
trade-offs for triangulations and voronoi diagrams. Computational Geometry: Theory and
Applications, 2017. Special issue of selected papers from the 31st European Workshop on
Computational Geometry. In press.

[18] D. T. Lee. On finding the convex hull of a simple polygon. International Journal of Parallel
Programming, 12(2):87–98, 1983.

[19] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building workload characterization tools with
valgrind. In IISWC, pages 2–2, Oct 2006.

21

	1 Introduction
	1.1 Results and Paper Organization

	2 Preliminaries
	2.1 Sample problem: convex hull computation
	2.2 Compressed Stack Overview

	3 Implementation
	3.1 Class and file organization
	3.2 Data, context and index types
	3.3 Compressed Stack
	3.4 Stack algorithm: Practical vs. Theoretical
	3.5 Additional Functionalities
	3.6 Example of Stack Algorithms

	4 Experimental Results
	4.1 Data and evaluation measures.
	4.2 Linear sized stack
	4.3 A challenging scenario for the compressed stack

	5 Conclusions

